Primal path algorithm for compositional data analysis
نویسندگان
چکیده
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA relaxed primal-dual path-following algorithm for linear programming
In this paper, we provide an easily satisfied relaxation condition for the primaldual interior path-following algorithm to solve linear programming problems. It is shown that the relaxed algorithm preserves the property of polynomial-time convergence. The computational results obtained by implementing two versions of the relaxed algorithm with slight modifications clearly demonstrate the potent...
متن کاملCorrelation Analysis for Compositional Data
Compositional data need a special treatment prior to correlation analysis. In this paper we argue why standard transformations for compositional data are not suitable for computing correlations, and why the use of raw or log-transformed data is neither meaningful. As a solution, a procedure based on balances is outlined, leading to sensible correlation measures. The construction of the balances...
متن کاملRobust factor analysis for compositional data
Factor analysis as a dimension reduction technique is widely used with compositional data. Using the method for raw data or for improperly transformed data will, however, lead to biased results and consequently to misleading interpretations. Although some procedures, suitable for factor analysis with compositional data, were already developed, they require pre-knowledge of variable groups, or a...
متن کاملSymmetric primal - dual path following
In this paper a symmetric primal-dual transformation for positive semideenite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual transformation is a well known fact. Based on this symmetric primal-dual transformation we derive Newt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2020
ISSN: 0167-9473
DOI: 10.1016/j.csda.2020.106958